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1. Introduction

Although there are many good reasons to consider General Relativity (GR) as the
best theory for the gravitational interaction, in the last few decades the advent
of precision cosmology tests appears more and more to suggest that this theory
may be incomplete. In fact, besides the well known problems of GR in explaining
the astrophysical phenomenology (i.e. the galactic rotation curves and small scale
structure formation), cosmological data indicates an underlying cosmic acceleration
of the Universe which cannot be recast in the framework of GR without resorting
to a additional exotic matter components. Several models have been proposed [1]
in order to address this problem and currently the one which best fits all available
observations (Supernovae Ia [2], Cosmic Microwave Background anisotropies [3], Large
Scale Structure formation [4], baryon oscillations [5], weak lensing [6]), turns out to
be the Concordance Model in which a tiny cosmological constant is present [7] and
ordinary matter is dominated by a Cold Dark component. However, given that the
Λ -CDM model is affected by significant fine-tuning problems related to the vacuum
energy scale, it seems desirable to investigate other viable theoretical schemes.

It is for these reasons that in recent years many attempts have been made to
generalize standard Einstein gravity. Among these models the so-called Extended
Theory of Gravitation (ETG) and, in particular, non-linear gravity theories or higher-
order theories of gravity have provided quite interesting results on both cosmological
[8, 9, 10, 11] and astrophysical [10, 12] scales. These models are based on gravitational
actions which are non-linear in the Ricci curvature R and/or contain terms involving
combinations of derivatives of R [13, 14, 15]. The peculiarity of these models is related
to the fact that field equations can be recast in such a way that the higher order
corrections provide an energy -momentum tensor of geometrical origin describing an
“effective” source term on the right hand side of the standard Einstein field equations
[8, 9]. In this Curvature Quintessence scenario, the cosmic acceleration can be shown to
result from such a new geometrical contribution to the cosmic energy density budget,
due to higher order corrections to the HE Lagrangian.

Among higher order theories of gravity, fourth order gravity f(R) models and
in particular f(R) = Rn [22] and f(R) = R + 1/R [8, 9, 21] have recently gained
particular attention since they seems to be able to provide an interesting alternative
description of the cosmos [16]. Furthermore, these models can be related to other
cosmologically viable models once the background dynamics has been introduced into
the field equations [17], providing a possible theoretical explanation to some of them.

Because the field equations resulting from HTG are extremely complicated,
the theory of dynamical systems provides a powerful scheme for investigating the
physical behaviour of such theories (see for example [22, 23]). In fact, studying
cosmologies using the dynamical systems approach has the advantage of providing
a relatively simple method for obtaining exact solutions (even if these only represent
the asymptotic behavior) and obtain a (qualitative) description of the global dynamics
of these models. Consequently, such an analysis allows for an efficient preliminary
investigation of these theories, suggesting what kind of models deserve further
investigation.

In this paper, using the Dynamical Systems Approach (DSA) approach suggested
by Collins and then by Ellis and Wainwright (see [24] for a wide class of cosmological
models in the GR context), we develop a completely general scheme, which in principle
allows one to analyze every fourth order gravity Lagrangian. Our study generalizes
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[22], which considered a generic power law function of the Ricci scalar f(R) = Rn and
extends the general approach given in a recent paper [25]. Here a general analysis was
obtained using a one -parameter description of any f(R) model, which unfortunately
turns out to be somewhat misleading.

The aim of this paper is to illustrate the general procedure for obtaining a phase
space analysis for any analytical f(R) Lagrangian, which is regular enough to be well
defined up to the third derivative in R. After a short preliminary discussion about
fourth order gravity, we will discuss this general procedure, giving particular attention
to clarifying the differences between our approach and the one worked out in [25]. In
order to illustrate these differences and the problems that exist in [25], we apply our
method to two different families of Lagrangian Rp exp qR and R + αRn . The last
part of the paper is devoted to discussion and conclusions.

2. Fourth Order Gravity Models

From a purely theoretical point of view there are no prescriptions which prevent one
to describe the gravitational interaction using a Lagrangian that is non-linear in the
Ricci scalar and/or contains combinations of the Ricci and Riemann tensor. The
main argument that led us to choose what we call the Hilbert - Einstein Lagrangian is
that only in this case does one obtain second order field equations in the metric and
the Newtonian Poisson equation in the low energy limit. If we relax the assumption
of linearity in the gravitational action, the general coordinate invariance allows, in
principle, infinitely many additive terms to the HE action:

AG =

∫

d4x
√−g

[

Λ + c0R+ c1R
2 + c2RµνR

µν + c3RµναβR
µναβ + ....

]

, (1)

and the general equations turn out to be particularly difficult to solve. However, if we
limit ourselves to the fourth order, several simplifications are possible. First of all the
Gauss-Bonnet theorem allows one to eliminate the RµνρσR

µνρσ terms. Moreover, in
the case of homogeneous and isotropic spacetimes, the terms coming from the variation
of the RµνR

µν invariant coincides with the one coming from the variation of the R2

term. Finally, one can define a suitable parametrization which makes it possible to
recast the higher order field equations as a system of second order differential equations
together with the constraint given by the definition of the new variables [26].

Consequently, in cosmology, the “effective” fourth order Lagrangian can be
considered a generic analytic function of the Ricci scalar f(R) § :

L =
√−g [f(R) + LM ] . (2)

By varying equation (2), we obtain the fourth order field equations

f ′(R)Rµν − 1

2
f(R)gµν = f ′(R);αβ (gαµgβν − gαβgµν) + T̃M

µν , (3)

where T̃M
µν =

2√−g

δ(
√−gLM )

δgµν
and the prime denotes the derivative with respect to R.

Standard Einstein equations are immediately recovered if f(R) = R. When f ′(R) 6= 0
the equation (3) can be recast in the form

Gµν = Rµν − 1

2
gµνR = T TOT

µν = TR
µν + TM

µν , (4)

§ Unless otherwise specified, we will use natural units (~= c = kB = 8πG = 1) and the (+,−,−,−)
signature.
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where

TR
µν =

1

f ′(R)

{

1

2
gµν [f(R)−Rf ′(R)] + f ′(R);αβ(gαµgβν − gαβgµν)

}

, (5)

represent the stress energy tensor of an effective fluid sometimes referred to as the
“curvature fluid” and

TM
µν =

1

f ′(R)
T̃M
µν , (6)

represents an effective stress-energy tensor associated with standard matter.
The conservation properties of these effective fluids are given by the Bianchi

identities T ;ν
µν . When applied to the total stress energy tensor, these identities reveal

that if standard matter is conserved the total fluid is also conserved even though the
curvature fluid may in general possess off–diagonal terms [22, 27, 28]. In other words,
no matter how complicated the effective stress energy tensor T TOT

µν is, it will always be

divergence free if T̃M ;ν
µν = 0. When applied on the single effective tensors, the Bianchi

identities read

TM ;ν
µν =

T̃M ;ν
µν

f ′(R)
− f ′′(R)

f ′(R)2
T̃M
µν R;ν , (7)

TR;ν
µν =

f ′′(R)

f ′(R)2
T̃M
µν R;ν , (8)

the last expression being a consequence of total energy-momentum conservation. It
follows that the individual effective fluids are not conserved but exchange energy and
momentum. It is worth noting that even if the effective tensor associated with the
matter is not conserved, standard matter still follows the usual conservation equations
T̃M ;ν
µν = 0.

Let us now consider the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric:

ds2 = dt2 − a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]

. (9)

For this metric the action the field equations (5) reduce to

H2 +
k

a2
=

1

3f ′

{

1

2
[f ′R− f(R)]− 3Hḟ ′ + µm

}

,

2Ḣ +H2 +
k

a2
= − 1

f ′

{

1

2
[f ′R− f(R)] + f̈ ′ − 3Hḟ ′ + pm

}

,

(10)

and

R = −6

(

2H2 + Ḣ +
k

a2

)

, (11)

where H ≡ ȧ/a, f ′ ≡ df(R)
dR and the “dot” is the derivative with respect to t. The

system (10) is closed by the only non trivial Bianchi identity for T̃M
µν :

µ̇m + 3H(µm + pm) = 0 , (12)

which corresponds to the energy conservation equation for standard matter.
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3. The dynamical system approach in fourth order gravity theories

Following early attempts (see for example [29]), the first extensive analysis of
cosmologies based on fourth order gravity theory using the DSA as defined in [24]
was given in [22]. Here the phase space of the power law model f(R) = χRn was
investigated in great detail, exact solutions were found and their stability determined.
Following this, several authors have applied a similar approach to other types of
Lagrangians [30], and very recently this scheme was generalized in [25].

In this paper we give a self consistent general technique that allows us to perform
a dynamical system analysis of any analytic fourth order theory of gravity in the case
of the FLRW spacetime.

The first step in the implementation of the Dynamical System Approach is the
definition of the variables. Following [22], we introduce the general dimensionless
variables :

x =
ḟ ′

f ′H
, y =

R

6H2
, z =

f

6f ′H2
,

Ω =
µm

3f ′H2
, K =

k

a2H2
,

(13)

where µm represents the energy density of a perfect fluid that might be present in the
model ‖.

The cosmological equations (10) are equivalent to the autonomous system :

dx

dN
= ε (2K + 2z − x2 + (K + y + 1)x) + Ωε (−3w − 1) + 2,

dy

dN
= yε (2y + 2K + xq+ 4),

dz

dN
= zε (2K − x+ 2y + 4) + xε yq,

dΩ

dN
= Ωε (2K − x+ 2y − 3w + 1),

dK

dN
= Kε (2K + 2y + 2),

(14)

where N = | lna| is the logarithmic time and ε = |H |/H . In addition, we have the
constraint equation

1 = −K − x− y + z + Ω , (15)

which can be used to reduce the dimension of the system. If one chooses to eliminate
K, the variable associated with the spatial curvature, we obtain

dx

dN
= ε (4z − 2x2 + (z − 2)x− 2y) + Ωε (x− 3w + 1),

dy

dN
= yε [2Ω + 2(z + 1) + x(q− 2)], (16)

‖ In what follows we will consider only models containing a single fluid with a generic barotropic
index. This might be problematic in treating the dust case because the condition w = 0 might lead to
additional fixed points. This issue has been checked in our calculations and no change in the number
of fixed points has been found. In addition, the generalization to a multi–fluid case is trivial: one has
just to add a new variable Ω for each new type of fluid. This has the consequence of increasing the
number of dynamical equations and therefore, the dimension of the phase space. However, since this
generalization does not really add anything to the conceptual problem (at least in terms of a local
analysis).
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dz

dN
= zε (2z + 2Ω− 3x+ 2)z + xε yq,

dΩ

dN
= Ω ε (2Ω− 3x+ 2z − 3w − 1),

K = z +Ω− x− y − 1 .

The quantity q is defined, in analogy with [25], as

q ≡ f ′

Rf ′′ . (17)

The expression of q in terms of the dynamical variables is the key to closing the system
(29) and allows one to perform the analysis of the phase space. The crucial aspect to
note here is that q is a function of R only, so the problem of obtaining q = q(x, y, z,Ω)
is reduced to the problem of writing R = R(x, y, z,Ω). This can be achieved by noting
that the quantity

r ≡ −Rf ′

f
(18)

is a function of R only and can be written as

r = − y

z
. (19)

Solving the above equation for R allows one to write R in terms of y and z and close
the system (16).

In this way, once a Lagrangian has been chosen, we can in principle write the
dynamical system associated with it using (16), substituting into it the appropriate
form of q = q(y, z). This procedure does however require particular attention. For
example, there are forms of the function f for which the inversion of (19) is a highly
non trivial (e.g. f(R) = cosh(R)). In addition, the function q could have a non-trivial
domain, admit divergences or may not be in the class C1, which makes the analysis
of the phase space a very delicate problem. Finally, the number m of equations of
(16) is always m ≥ 3 and this implies that fourth order gravity models can admit
chaotic behaviour. While this is not surprising, it makes the deduction of the non–
local properties of the phase space a very difficult task.

The solutions associated with the fixed points can be found by substituting the
coordinates of the fixed points into the system

Ḣ = αH2 , α = −1− Ωi + xi − zi , (20)

µ̇m =
3(1 + w)

α t
µm , (21)

where the subscript “i” stands for the value of a generic quantity in a fixed point.
This means that for α 6= 0 the general solutions can be written as

a = a0(t− t0)
1/α , (22)

µm = a0(t− t0)
3(1+w)

α . (23)

The expression above gives the solution for the scale factor and the evolution of the
energy density for every fixed point in which α 6= 0. When α = 0 the (20) reduces to
Ḣ = 0 which correspond to either a static or a de Sitter solution.

The solutions obtained in this way have to be considered particular solutions of
the cosmological equations in the same way that solutions can sometimes be found by
using an ansatz for the form of the solution. For this reason it is important to stress
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that only direct substitution of the results derived from this approach can ensure that
the solution is physical (i.e. it satisfies the cosmological equations (10) ). This check
is also useful for understanding the nature of the solutions themselves e.g. to calculate
the value of the integration constant(s).

Also, the fact that different fixed points correspond to the same solutions is due
to the fact that at the fixed points the different terms in the equation combine in such
a way to obtain the same evolution of the scale factor. This means that although two
solutions are the same, the physical mechanism that realizes them can be different

In the following we will present a number of examples of f(R) theories that can
be analyzed with this method and we compare the results obtained with those given
in [25] ¶. An analysis of the approach presented in [25] and the differences with our
method are given in the Appendix.

4. Examples of f(R) - Lagrangians

In this section we will show, with the help of some examples, how the DSA developed
above can be applied. In particular we will consider the cases f(R) = Rp exp(qR)
and f(R) = R + αRn. Since the aim of the paper is to provide only the general
setting with which to develop the dynamical system approach in the framework of
fourth order gravity, we will not give a detailed analysis of these models. A series of
future papers will be dedicated to this task. In what follows, we will limit ourselves
to the finite fixed points, their stability and the solutions associated with them. A
comparison with the results of [25] will also be presented.

4.1. The f(R) = Rp exp(qR) case

Let us consider the Lagrangian f(R) = Rp exp(qR). As explained in the previous
section, the dynamical system equations for this Lagrangian can be obtained by
calculating the form of the parameter q. We have

q(y, z) =
y z

y2 − p z2
. (24)

¶ One difference betwen our approach ad the one in [25] is that we consider a non zero spatial
curvature k. This choice has been made with the aim of obtaining a completely general analysis of
a fourth order cosmology from the dynamical systems point of view. In addition, since most of the
observational values for the cosmological parameters are heavily model dependent, we chose to limit
as much as possible the introduction of priors in the analysis. Anyway, the limit of flat spacelike
sections (K → 0) can be obtained in a straightforward way for our examples. In fact, each fixed
point is associated with a specific value of the variable K (i.e. a value for k) and the stability of these
points is independent from the value of K. This means that in order to consider the limit K → 0 one
has just to exclude the fixed points associated to K 6= 0. Also, looking at the dynamical equations
one realizes that K = 0 is an invariant submanifold i.e. an orbit with initial condition K = 0 will
not escape the subspace K = 0 and orbits with initial condition K 6= 0 can approach the hyperplane
K = 0 only asymptotically. As a consequence, one does not need to have any other information on
the rest of the phase space to characterize the evolution of the orbits in the submanifold K = 0.
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Substituting this function into (29) we obtain

dx

dN
= ε [4z − 2x2 + (z − 2)x− 2y] + Ωε (x− 3w + 1),

dy

dN
= yε

[

2Ω + 2z + 2 +
x z

y2 − p z2
− 2x

]

,

dz

dN
= zε

[

2z + 2Ω− 3x+ 2 +
x y

y2 − p z2

]

,

dΩ

dN
= Ω ε (2Ω− 3x+ 2z − 3w − 1),

K = z +Ω− x− y − 1 .

(25)

The most striking feature of this system is the fact that two of the equations have a
singularity in the hypersurface y2 = p z2. This, together with the existence of the
invariant submanifolds y = 0 and z = 0 heavily constrains the dynamics of the system.
In particular, it implies that no global attractor is present, so no general conclusion
can be made on the behavior of the orbits without first providing information about
the initial conditions. The finite fixed points can be obtained by setting the LHS of
(25) to zero and solving for (x, y, z,Ω), the results are shown in Table 1.

Table 1. Fixed points of Rp exp(qR).The superscript “*” represents a point
corresponding to a double solution.

Point Coordinates (x, y, z,Ω) K
A (0, 0, 0, 0) −1
B (−1, 0, 0, 0) 0
C (−1− 3w, 0, 0,−1− 3w) −1
D (1− 3w, 0, 0, 2− 3w) 0
E (2, 0, 2, 0) −1
F∗ (1,−2, 0, 0) 0
G (0,−2,−1, 0) 0
H (4, 0, 5, 0) 0
I (2− 2p, 2p(1− p), 2− 2p, 0) 2p(p− 1)− 1
L∗ (−3(1 + w),−2, 0,−4− 3w) 0

M
(

4−2p
1−2p ,

(5−4p)p
2p2−3p+1 ,

5−4p
(p−1)(2p−1) , 0

)

0

N
(

−3(1+w)(p−1)
p , 3(1+w)−4p

2p , −4p+3w+3
2p2 , p(9w−2p(3w+4)+13)−3(w+1)

2p2

)

0

The solutions corresponding to these fixed points can be obtained by substituting
the coordinates into the system (20) and are shown in Table 2 +.

The stability of the finite fixed points can be found using the Hartman-Grobman
theorem [31]. The results are shown in Table 3. Note that some of the eigenvalues
diverge for p = 0, 1. This happens because in the operations involved in the derivation
of the stability terms p− 1 and/or p appear in the denominators. However this is not
a real pathology of the method but rather a consequence of the fact that for these two
values of the parameter the cosmological equations assume a special form. In fact, as

+ Note that even if the parameter q is not present in the dynamical equations it appears in
the solutions because we have calculated the integration constants via direct substitution in the
cosmological equations.
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Table 2. Solutions associated with the fixed points of Rp exp(qR). The solutions
are physical only in the intervals of p mentioned in the last column.

Point Scale Factor Energy Density Physical
A a(t) = (t− t0) 0 p ≥ 1

B a(t) = a0 (t− t0)
1/2

0 p ≥ 2
C a(t) = (t− t0) 0 p ≥ 1

D a(t) = a0 (t− t0)
1/2

0 p ≥ 2
E a(t) = (t− t0) 0 p ≥ 1

F∗

{

a(t) = a0,

a(t) = a0 exp
[

±
√
2−3p
6
√
q (t− t0)

]

,
0

p ≥ 0
p < 2

3 , q > 0 ∨ p > 2
3 , q < 0

G
{

a(t) = a0,

a(t) = a0 exp
[

±
√
2−3p
6
√
q (t− t0)

]

,
0

p ≥ 0
p < 2

3 , q > 0 ∨ p > 2
3 , q < 0

H a(t) = a0 (t− t0)
1/2

0 p ≥ 2

I a(t) = (t− t0)
√

1− 2p(p− 1) 0 1 ≤ p ≤ 1
2 +

√
3
2

L∗

{

a(t) = a0,

a(t) = a0 exp
[

±
√
2−3p
6
√
q (t− t0)

]

,
0

p ≥ 0
p < 2

3 , q > 0 ∨ p > 2
3 , q < 0

M a(t) = a0 (t− t0)
2p2−3p+1

2−p µm = µm 0t
3(2p2−3p+1)(w+1)

p−2 p = 1
2 , 1,

5
4

N a(t) = a0 (t− t0)
2p

3(w+1) µm = µm 0(t− t0)
−2p p = 3(w+1)

4 (µm 0 = 0)

we will see in the next section, if one starts the calculations using these critical values
of p one ends up with eigenvalues that present no divergence.

Let us now compare our results with the ones in [25] (see the Appendix for details
of this last method). The number of fixed points obtained for this Lagrangian, when
K = 0, matches the ones obtained in [25]. This result can be explained by the fact
that the solutions of the constraint equation form (A.1) coincide with the ones coming
from the correct constraint equation (A.2) (the matching between the two systems can
be obtained setting w = 0 in Table 1). However, when one calculates the stability
of these points our results are in strikingly different to those presented in [25]. For
example, in our general formalism it turns out that the fixed point M is a saddle for
any value of the parameter p and, as consequence, it can represent only a transient
phase in the evolution of this class of models. Instead, in [25] the authors find that
this point is a stable spiral and argue that this fact prevents the existence of cosmic
histories in which a decelerated expansion is followed by an accelerated one. From
this they also conclude that an entire subclass of these models (m = m(p) > 0) can
be ruled out. Our results show clearly that this is not the case. Another example
relates to the point N . In [25] the authors find that this point can be stable when
m → 0, but from Table 4 one finds that this point can only be a saddle. As explained
in the Appendix, the reason behind these differences is the fact that the method used
in [25] leads to incorrect results when, like in this case, there is no unambiguous way
of determining the parameter r = −y/z from the coordinates of the fixed points.
Consequently the conclusions in [25] relating to the properties of these points are
incorrect and have no physical meaning.
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Table 3. The eigenvalues associated with the fixed points in Rp exp(qR). The
eigenvalues of the fixed point N are displayed on three lines because of their
mathematical complexity.

Point Eigenvalues

A [2,−2, 2,−1− 3w]
B [5, 2, 4, 2− 3w]
C [3(1 + w),−2, 2, 1 + 3w]
D [3(1 + w), 2, 4,−2 + 3w]
E [−2,−2, 2,−2− 3(1 + w)]
F [−4,−2, 0,−4− 3w]

G
[

−2,− 3
2 − 1

2

√

68−25p
p−4 ,− 3

2 + 1
2

√

68−25p
p−4 ,−3(w + 1)

]

H [−5, 4, 2,−3(1+ w)]

I
[

−2,−2 + p−
√

3 p (3p− 4),−2 + p+
√

3 p (3p− 4), 2p− 3(1 + w)
]

L [−4,−2, 0, 4+ 3w]

M
[

−4 + 1
p−1 ,

2(p−2)
1−3p+p2 ,−2 + 6

1−2p + 2
p−1 ,−4 + 3

1−2p + 2
p−1 − 3w

]

N
[

−1−
∣

∣

∣

p−3(ω+1)
p

∣

∣

∣
,−1 +

∣

∣

∣

p−3(ω+1)
p

∣

∣

∣
, .....

.... 3[(2p−1)w−1]
4p − 1

4

√

−81(1+w)+4p2(8+3w)2+3p(1+w)(139+87w)−4p2(152+3w(55+18w))
(p−1)p2 , ......

.... 3[(2p−1)w−1]
4p + 1

4

√

−81(1+w)+4p2(8+3w)2+3p(1+w)(139+87w)−4p2(152+3w(55+18w))
(p−1)p2

]

4.2. The f(R) = exp(qR) case

Let us now consider the simple case of a pure exponential Lagrangian. Since this case
has been extensively analyzed in a different paper [32], we sketch here only the main
results which are interesting for our discussion, referring the reader to [32] for further
details. The function q is

q(y, z) =
z

y
, (26)

and dynamical system equations read :

dx

dN
= ε [4z − 2y − x(2 + 2x− z − Ω)] + Ωε (1− 3w) ,

dy

dN
= 2yε (2 + 2z + 2Ω− x) ,

dz

dN
= 2zε (1 + Ω + z − x) ,

dΩ

dN
= Ωε (2Ω− 1− 3w + 2z − 3x) ,

K = z +Ω− x− y − 1 .

(27)

The coordinates of the fixed points, their eigenvalues and corresponding solutions are
summarized in Table 5 .

The cosmology of the Lagrangian f(R) = exp(qR) shows two interesting de Sitter
phases: the point D which is unstable and non hyperbolic point C that can behave as
an attractor (see [32]). In addition it is possible to prove that there is a set of non zero
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Table 4. The stability of the eigenvalues associated with the fixed points in the
model Rp exp(qR). With the index + we have indicated the attractive nature of
the spiral points.

Point Stability

A saddle

B
{

repellor 0 < w < 2/3
saddle otherwise

C saddle

D
{

repellor 2/3 < w < 1
saddle otherwise

E saddle
F saddle

G







attractor 0 < w < 1 ∪ 2 < p ≤ 68
25

spiral+ 0 ≤ w ≤ 1 ∪ 68
25 < p < 4

saddle otherwise
H saddle

I







attractor 0 < w < 1 ∪ 1
2 −

√
3
2 < p ≤ 0 ∨ 4

3 ≤ p < 1
2 +

√
3
2

spiral+ 0 ≤ w ≤ 1 ∪ 0 < p < 4
3

saddle otherwise
L non hyperbolic

M
{

attractor 0 < w < 1 ∪ p < 1
2 (1−

√
3) ∨ 1

2 (1 +
√
3) < p < 2

saddle otherwise
N saddle

measure of initial conditions for which orbits connect these two points. In other words,
such a Lagrangian can provide a natural framework both for inflation and the recent
cosmic acceleration phenomenon. Nevertheless, it seems to lack an almost Friedmann
phase which is required for structure formation.

Table 5. Coordinates of the fixed points,the eigenvalues, and solutions for
f(R) = exp(qR). The superscript “*” represents indicates a double point

Point Coordinates (x, y, z,Ω) Eigenvalues Solution

A [0, 0, 0, 0] [−3w − 1,−2, 2, 2] a = ao(t− to)

B [−1, 0, 0, 0] [2− 3w, 2, 4, 4] a = ao(t− to)
1
2

C∗ [1,−2, 0, 0] [−2,−4,−3w− 4, 0] a = aoe
c(t−to)

D [0,−2,−1, 0] [−
√
17+3
2 ,

√
17−3
2 ,−2,−3− 3w] a = aoe

c(t−to)

E∗ [1− 3w, 0, 0, 2− 3w] [3w − 2, 2, 4, 4] a = ao(t− to)
1
2

F∗ [−3w − 3,−2, 0,−3w− 4] [3w + 4,−2,−4, 0] a = aoe
c(t−to)

G [−3w − 1, 0, 0,−3w− 1] [3w + 1,−2, 2, 2] a = ao(t− to)
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Table 6. The stability of the eigenvalues associated with the fixed points in the
model exp(qR). See [32] for the stability of the non hyperbolic fixed points.

Point Stability

A saddle

B
{

repellor 0 < w < 2/3
saddle otherwise

C non hyperbolic
D saddle

E
{

repellor 2/3 < w < 1
saddle otherwise

F non hyperbolic
G saddle

If we now compare our results with ones described in [25], there are some clear
differences. First, the number of fixed points turns out to be different. In fact, in our
case there is no fixed point corresponding to the point P4 of [25], and we obtain a
new point F that does not appear in [25]. This follows directly from the pathological
behaviour of equation (A.1). In fact, in the case of this Lagrangian, this expression
and, in particular, the relation m(r) = −r − 1 has no solutions. Therefore, even in
principle, there is no way to apply the method of [25] to this class of theories. Even if
one refers to the correct equation (A.2), the only possibility of having m(r) constant is
to set x = 0, but this condition is not fulfilled by most of the fixed points. It is useful
to see how these problems are related to the choice of taking m to be a parameter:
if one substitutes the expression for m in terms of the dynamical variables into the
initial dynamical system one obtains a set fixed points which correspond to the ones
in Table 5.

Finally, differences arise also in the stability analysis. The two points E and F are
non - hyperbolic and therefore require special treatment, without which it is impossible
to draw general conclusions. Such treatment is given in detail in [32].

4.3. The case f(R) = R+ αRn

Let us discuss now the case of a Lagrangian corresponding to a power law correction
of the Hilbert - Einstein gravity Lagrangian f(R) = R + αRn. In this case, the
characteristic function q(r) reads :

q(r) =
y

n(z − y)
, (28)
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and substituting this relation into the system of equations (29) one obtains

dx

dN
= −2x2 + (z − 2)x− 2y + 4z +Ω(x − 3w + 1),

dy

dN
= yε [2Ω + 2(z + 1) +

x y

n(z − y)
− 2x],

dz

dN
= zε (2z + 2Ω− 3x+ 2) + ε

x y2

n(z − y)
,

dΩ

dN
= Ω ε (2Ω− 3x+ 2z − 3w − 1),

K = z +Ω− x− y − 1 .

(29)

As in the case of f(R) = Rp exp(qR), the system is divergent on a hypersurface (this
time y = z) but it admits only one invariant submanifold, namely y = 0 and z = 0.
This, again, implies that no global attractor is present and no general conclusion can
be made on the behavior of the orbits without giving information about the initial
conditions. The finite fixed points, their eigenvalues, their stability and the solutions
corresponding to them are summarized in Tables 7, 8, 9 and 10.

Table 7. Coordinate of the finite fixed points for R+ αRn gravity.

Point Coordinates (x, y, z,Ω) K
A (0, 0, 0, 0) −1
B (−1, 0, 0, 0) 0
C (−1− 3w, 0, 0,−1− 3w) −1
D (1− 3w, 0, 0, 2− 3w) 0
E (0,−2,−1, 0) 0
F (2, 0, 2, 0) −1
G (4, 0, 5, 0) 0
H (2(1− n), 2n(n− 1), 2(1− n), 0) 2n(n− 1)− 1

I
(

2(n−2)
2n−1 , (5−4n)n

2n2−3n+1 ,
5−4n

2n2−3n+1 , 0
)

0

L
(

− 3(n−1)(w+1)
n , −4n+3w+3

2n , −4n+3w+3
2n2 , −2(3w+4)n2+(9w+13)n−3(w+1)

2n2

)

0

As before our results are different from those given in [25]. First of all, our
set of fixed points do not coincide with the ones presented in [25]. In particular, in
our analysis there is no fixed point corresponding to P5a. Again, the reason for this
difference is to be found in the constraint equation (A.1), which in this case gives the
incorrect set of solutions and therefore affects the set of fixed points. In fact, if one
substitutes the expression for m(r) of [25] in terms of the coordinates in equations
(34)-(39), it is easy to verify that two of these equations diverge at this point.

The differences between the results in our approach and the one presented in [25]
are even more evident when the stability analysis is considered. For example, the
point E , corresponding to P1, is always a saddle, except into the region 32/25 ≤ n < 2
when it is attractive. This behavior is not obtained in [25] for which this point is
stable only for −2 < n < 0. Also, points G (P4) and D (P3), which in our approach
are always saddles (at least in the dust and in the radiation case), are always repellers
in [25]. Finally, the stability of I corresponding to P6 appears to be different from the
one presented in [25].
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Table 8. The eigenvalues associated with the fixed points in R+ αRn.

Point Eigenvalues

A [−2, 2, 2,−3w− 1]
B [5, 4, 2, 2− 3w]
C [−2, 2, 3w+ 1, 3(w + 1)]
D [4, 2, 3(w+ 1), 3w − 2]

E
[

−2,− 3
2 − 1

2

√

25n−32
n ,− 3

2 + 1
2

√

25n−32
n ,−3(w + 1)

]

F [−2,−2, 2,−3(w+ 1)]
G [−5, 4, 2,−3(1+ w)]

H
[

2(n− 1), n− 2−
√

3n(3n− 4), n− 2 +
√

3n(3n− 4), 2n− 3(w + 1)
]

I
[

3[(2n−1)w−1]
4n −

√

−81(1+w)+4n3(8+3w)2+3n(1+w)(139+87w)−4n2(152+3w(55+18w))
16(n−1)n2 ,

3[(2n−1)w−1]
4n +

√

−81(1+w)+4n3(8+3w)2+3n(1+w)(139+87w)−4n2(152+3w(55+18w))
16(n−1)n2 ,

1
2

(

3w − (5n+3(n−2)w−6)
n + 1

)

, 12

(

3w + (5n+3(n−2)w−6)
n + 1

)]

L
[

−4 + 1
n−1 ,−1 + 3

−1+2n ,−2 + 6
−1+2n + 2

−1+n ,−4 + 3
1−2n + 2

−1+n + 2
−1+n − 3w

]

5. Some remarks on the phase space of Rn-gravity

In the previous sections we have analyzed two cases of fourth order gravity
Lagrangians, and the relative subcases, to illustrate how a general dynamical system
approach can be formulated for these theories. Furthermore, we have discussed the
differences between our approach and the one presented in [25]. In this section we
compare the results of these methods when they are applied to f(R) = χRn. The
phase space of this class of theories has been investigated in detail in [22]. In the
following we will show that only our method gives results that are in agreement with
[22].

The crucial feature of Rn-gravity in terms of the general method discussed above
is that the characteristic functions r and q(r) are always constant. In particular, we
have r = −n q(r) = n− 1. From the definition (19) it is then clear that the variables
z and y are not independent, i.e., the phase space Rn-gravity is contained in the
subspace y = nz of the general phase space described by (29). This can be easily seen
if one substitutes y = nz into (29). Then the equations for y and z turn out to be
exactly the same and (29) reduces to :

dx

dN
= ε [−2x2 +Ωx+ zx− 2x− 2y + 4z +Ω(1− 3w)] ,

dy

dN
= yε

[

2Ω +

(

1

n− 1
− 2

)

x+ 2(z + 1)

]

,

dΩ

dN
= Ωε [2Ω− 3x+ 2z − 3w − 1] ,

(30)

with the constraint

1 + x− y − z +K = 0 , (31)
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Table 9. The stability of the eigenvalues associated with the fixed points in the
model R + αRn. The quantities Ai related to the fixed point L, represent some
non fractional numerical values (A1 ≈ 1.220, A1 ≈ 1.224, A3 ≈ 1.470).

Point Stability

A saddle

B
{

repellor 0 < w < 2/3
saddle otherwise

C saddle

D
{

repellor 2/3 < w < 1
saddle otherwise

E







attractor 32
25 ≤ n < 2

spiral+ 0 < n < 32
25

saddle otherwise
F saddle
G saddle

H
{

spiral+ 0 < n < 1
saddle otherwise

I







w = 0, 1/3 saddle,

w = 1

{

repellor A1 < n ≤ A2 ∪ A3 < n < 3
2 ,

saddle otherwise

L







































w = 0

{

repeller 1 < n < 5
4 ,

saddle otherwise,

w = 1/3







attractor n < 1
2 (1 −

√
3) ∪ n > 2,

repeller 1 < n < 5
4 ,

saddle otherwise,

w = 1

{

repellor 1 < n < 1
14 (11 +

√
37),

saddle otherwise

which is equivalent to the one given in [22]. Consequently the results obtained from
the method presented above and [22] are identical ∗.

The same cannot be said for the results of [25]. In fact, although the set of
fixed points are in agreement with the ones given in [22], the stability analysis is
remarkably different. For example, the fixed point G is claimed to become a stable
spiral for n > 1, preventing the presence of orbits with transient almost–Friedmann
behavior. According to our results this is clearly not true since G is always a saddle -
focus or a saddle in such an interval of n. Furthermore, G remains a saddle also
for every n ≤ 0.33 whereas in [25] is presented as a repeller for n → −1−. Other
differences relate to the fixed point B, which is never stable in our approach, but is
suggested to be attractive for 3/4 < n < 1 in [25].

∗ One can obtain a completely analogous result if the whole equations system (29) is considered
without lowering the order of the equations. Of course one has to be careful in discarding the fixed
points which do not fulfill the constraint y = nz.
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Table 10. Solutions associated to the fixed points of R + αRn. The solutions
are physical only in the intervals of p mentioned in the last column.

Point Scale Factor Energy Density Physical
A a(t) = (t− t0) 0 n ≥ 1

B a(t) = a0 (t− t0)
1/2

0 n ≥ 1
C a(t) = (t− t0) 0 n ≥ 1

D a(t) = a0 (t− t0)
1/2 0 n ≥ 1

E∗

{

a(t) = a0,

a(t) = a0 exp
[

±2
√
3αγ(2− 3n)γ(t− t0)

]

,
γ = 1

2(1−n)

0
n ≥ 0

n < 2
3 , α > 0 ∨

n > 2
3 , α < 0

F a(t) = (t− t0) 0 n ≥ 1

G a(t) = a0 (t− t0)
1/2 0 n ≥ 1

H a(t) =
√

1− 2n(n− 1) (t− t0) 0 1 ≤ n ≥ 1
2 +

√
3
2

I∗ a(t) = a0 (t− t0)
2n2

−3n+1
2−n µm = µm 0t

−
3(2n2

−3n+1)(w+1)

n−2 n = 1
2 , µm,0 = 0

L a(t) = a0 (t− t0)
2n

3(w+1) µm = µm ,0(t− t0)
2p non physical

Table 11. Coordinates of the fixed points for the model f(R) = χRn. The
superscript “*” represents a double solution. The point B is a double solution for
n = 0, 2.

Point Coordinates (x, y, z,Ω) K
A∗ (0, 0, 0, 0) −1
B (−1, 0, 0, 0) 0
C (−1− 3w, 0, 0,−1− 3w) −1
D (1− 3w, 0, 0, 2− 3w) 0
E (2(1− n),−2n(n− 1), 2(1− n), 0) 2n(n− 1)− 1

F
(

− 3(n−1)(w+1)
n , −4n+3w+3

2n , −4n+3w+3
2n2 , −2(3w+4)n2+(9w+13)n−3(w+1)

2n2

)

0

G
(

2(n−2)
2n−1 , (5−4n)n

2n2−3n+1 ,
5−4n

2n2−3n+1 , 0
)

0

Table 12. Coordinates of the correct fixed points for the model f(R) = χRn.

Point Coordinates (x, y, z,Ω) K
A (0, 0, 0, 0) −1
B (−1, 0, 0, 0) 0
C (−1− 3w, 0, 0,−1− 3w) −1
D (1− 3w, 0, 0, 2− 3w) 0
E (2(1− n),−2n(n− 1), 2(1− n), 0) 2n(n− 1)− 1

F
(

− 3(n−1)(w+1)
n , −4n+3w+3

2n , −4n+3w+3
2n2 , −2(3w+4)n2+(9w+13)n−3(w+1)

2n2

)

0

G
(

2(n−2)
2n−1 , (5−4n)n

2n2−3n+1 ,
5−4n

2n2−3n+1 , 0
)

0
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Table 13. Stability of the fixed points for Rn-gravity with matter. We consider
here only dust or radiation, see [22] for details and the case of stiff matter. The
term “spiral+” has been used for pure attractive focus-nodes and the term“saddle-
focus” for unstable focus-nodes.

n < 1
2 (1−

√
3) 1

2 (1−
√
3) < n < 0 0 < n < 1/2 1/2 < n < 1

A saddle saddle saddle saddle
B repulsive repulsive repulsive repulsive
C saddle saddle saddle saddle
D saddle saddle saddle saddle
E saddle attractive spiral spiral
F attractive saddle saddle attractive

1 < n < 5/4 5/4 < n < 4/3 4/3 < n < 1
2 (1 +

√
3) n > 1

2 (1 +
√
3)

A saddle saddle saddle saddle
B saddle repulsive repulsive repulsive
C saddle saddle saddle saddle
D saddle saddle saddle saddle
H spiral spiral attractive saddle
L repulsive saddle saddle attractive

G n . 0.33 0.33 . n . 0.35 0.35 . n . 0.37 0.37 . n . 0.71 0.71 . n . 1

w = 0 saddle saddle-focus saddle-focus saddle-focus saddle
w = 1/3 saddle saddle saddle-focus saddle-focus saddle-focus

1 . n . 1.220 1.220 . n . 1.223 1.223 . n . 1.224 1.224 . n . 1.28

w = 0 saddle-focus saddle-focus saddle-focus saddle-focus
w = 1/3 saddle-focus saddle-focus saddle-focus saddle-focus

1.28 . n . 1.32 1.32 . n . 1.47 1.47 . n . 1.50 n & 1.50

w = 0 saddle-focus saddle saddle saddle
w = 1/3 saddle saddle saddle saddle

6. Conclusions

In this paper we have presented a general formalism that allows one to apply DSA to
a generic fourth order Lagrangian. The crucial point of this method is to express the
two characteristic functions [25]:

q =
f ′

Rf ′′ , r = −Rf ′

f
(32)

in terms of the dynamical variables, which, in principle, allows one to obtain a closed
autonomous system for any Lagrangian density f(R).

The resulting general system admits many interesting features, but is very difficult
to analyze without specifying the function q (i.e. the form of f(R)). Consequently, a
“one parameter” approach can lead to a number of misleading results.
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Even after substituting for q, the dynamical system analysis is still very delicate;
in fact, q could be discontinuous, admit singularities or generate additional invariant
submanifolds that influence deeply the stability of the fixed points as well as the global
evolution of the orbits.

After describing the method, we applied it to two classes of fourth order gravity
models: R + αRn and Rp exp(qR), finding some very interesting preliminary results
for the finite phase space. Both these models have fixed points with corresponding
solutions that admit accelerated expansion and, consequently can be considered as
possible candidates able to model either inflation or dark energy eras (or both).
In addition, there are other fixed points which are linked to phases of decelerated
expansion which can in principle allow for structure formation. These latter solutions
are not physical for every value of their parameters, but this is not necessarily a
problem. In fact, in order to obtain a Friedmann cosmology evolving towards a dark
energy era, these points are required to be unstable i.e. cosmic histories coast past
them for a period which depends on the initial conditions. This means that the
general integral of the cosmological equations corresponding to such an orbit will only
approximate the fixed point solution and this approximate behavior might still allow
structures to form.

It is also important to mention the fact that even if one has the desired fixed
points and desired stability, this does not necessarily imply that there is an orbit
connecting them. This is due to the presence of singular and invariant submanifolds
that effectively divide the phase space into independent sectors. Of course one can
implement further constraints on the parameters in order to have all the interesting
points in a single connected sector, but this is still not sufficient to guarantee that an
orbit would connect them. The situation is made worse by the fact that, since the
phase space is of dimension higher than three, chaotic behavior can also occur. It is
clear then, that any statement on the global behavior of the orbits is only reliable if
an accurate numerical analysis is performed. However, these issues (and others) will
be investigated in more detail in a series of forthcoming papers.

A final comment is needed regarding the differences between our results and the
ones given in [25]. Even if the introduction of q and r, was suggested for the first
time in that paper, the results above (and in particular the existence of a viable
matter era) are in disagreement with the ones given in that paper. The reason is that
the authors of [25] used “a one parameter description” in order to deal with (29) in
general. We were able to prove that, unfortunately, not only are the equations given
in [25] incomplete, but also that the method also gives both incorrect and misleading
conclusions.

Appendix A. The approach of [25]

The basic idea for closing the general system of autonomous equations for f(R)-gravity
was suggested for the first time in [25]. In fact, if we define m(r) = q

−1 the equations
(29) for w = 0 and K = 0 are equivalent to the ones given in this paper. The authors
of [25] proposed that the function m could be used as a parameter associated with the
choice of f(R), thus obtaining a “one parameter approach” to the dynamical systems
analysis of f(R) gravity. Unfortunately their method has several problems that lead to
incorrect results. These problems can be avoided only if one considers the framework
presented above.
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Let us look at this issue in more detail ♯. In [25] the system equivalent to (29) is
associated with the relation

dr

dN
= r(1 +m(r) + r)

Ṙ

HR
, (A.1)

which is clearly a combination of the equations for z and y. In order to ensure that
the variable r and consequently the parameter m is constant they require the RHS
of the above equation to be zero. Their solution to this problem is the condition
1 + m(r) + r = 0, which is an equation for r when the function m(r) has been
substituted for and is also the bases of their method of analysis.

The problem here is that this equation has not been fully expressed in terms of
the dynamical system variables. In fact, one can rewrite (A.1) in the form :

dr

dN
=

r(1 +m(r) + r)

m(r)
x , (A.2)

which means that the condition
dr

dN
= 0 in fact corresponds to

r(1 +m(r) + r)

m(r)
x = 0 (A.3)

rather than 1 +m(r) + r = 0. Equation (A.3) has a solution if

x = 0,

r = 0,

(1 +m(r) + r)

m(r)
= 0 ,

(A.4)

and this leads to solutions for r which are in general different from the values of r
obtained from 1 +m(r) + r = 0. This inconsistency has major consequences for the
rest of the analysis in [25], leading to changes in the number of fixed points as well as
their stability (see the text above for details).

In fact, a more careful analysis reveals that for some of the fixed points (e.g.
P1, ...P4) the values of r obtained from the relation r = −y/z either cannot be
determined unambiguously or do not solve the condition 1 + m(r) + r = 0, which
is claimed to come from (A.1) in [25].

This is a clear indication that the approach used in [25] is both incomplete and
leads to wrong conclusions. It is also interesting to stress that if one substitutes the
expression for m in terms of the dynamical system variables in (26-29) of [25], the
results match the one obtained in our formalism. This implies that the reason the
method described in [25] fails has its roots in the attempt to describe the phase space
of a whole class of fourth order theories of gravity with only one parameter.

♯ It is important to note that in [25] the signature is not the same of the one used here (e.g -,+,+,+
instead of +,-,-,-) and the definition of the variables are slightly different. The transformation from
one variable to another is as follows:

x → −x1, y → −x3, z → x2, K → 0, w → 0.

However, as expected, this does not affect our conclusions.
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